If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x-35+5x^2=0
a = 5; b = 18; c = -35;
Δ = b2-4ac
Δ = 182-4·5·(-35)
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-32}{2*5}=\frac{-50}{10} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+32}{2*5}=\frac{14}{10} =1+2/5 $
| -(9)/(19)=n-11 | | 3x+2=13=4x+3 | | 6c+72=180 | | 29(30x-30)=10x | | 27+6x-3=90 | | 10x-5+40=12x+13 | | 4a+60=180 | | 3x+6=12x+54 | | 1x-1=6+x | | –2=y+5 | | ?x6=13 | | -3(7x-9)=99 | | 18w=180 | | 2w+9w+3=25 | | 2(1x+2.5)=2x+50-30 | | 14+3p+10=23+3p | | 3-(x-5)=2x-18 | | -4-2/5y=21 | | -26=2(4+5x)+3(x+6) | | 11x-5+64=21x+9 | | 5(v-8)=7v-28 | | n/9-0.8=1.3 | | 9-4p=-47 | | 2x/3+3=11 | | h-68/9=3 | | 7(8x+1)=13-56x | | 100+20p=180 | | -4(-x-1)2x+3=43 | | 16d-(4-5d)=(-67) | | x+15=4x+90=180 | | -29=v/5-4 | | 8x-5=2(3x+4x) |